Research Paper

MANAGING DATA WITH DATA MINING

Deepa Beeharry
FTMS College
deepeeharry@vesltech.com

Vijaye Beeharry
CEO of VESL TECHNOLOGIES LTD
VESL TECHNOLOGIES LTD
Vijaye.beeharry@vesltech.com

Abstract

Big Data concern vast volume, unpredictable, developing informational collections with various, self-governing sources with the quick advancement of systems administration information stockpiling, and the information accumulation limit, Big Data is presently quickly growing in all science and building areas, including physical, organic and biomedical sciences. This paper exhibits a HACE hypothesis that portrays the highlights of the Big Data upheaval, and proposes a Big Data handling model, from the information mining point of view. This information-driven model includes request driven collection of data sources, mining and investigation, client enthusiasm displaying, and security and protection contemplations. Investigating the testing issues in the information-driven model and furthermore in the Big Data transformation. The system is able to collaborate all of the common data into one object for easier analysis.

Key Terms: Data, mining, data mining.

1. Introduction

In straightforward words, information mining is described as a method used to isolate usable data from a greater game plan of any rough data. It deduces looking at data outlines in considerable bundles of data using no less than one programming. Data mining has applications in different fields, like science and research. As a utilization of data mining, associations can take in additional about their customers and develop more practical strategies related to various business limits and accordingly utilize resources in a more perfect and sharp way. This causes associations be closer to their objective and settle on better decisions. Data mining incorporates fruitful data assembling and warehousing and PC getting ready. For segmenting the data and surveying the probability of future events, data mining uses complex logical estimations. Data mining is generally called Knowledge Discovery in Data (KDD).} (G. Duncan, 2007)

For the most part, data mining (now and then called data or learning revelation) is the way toward dissecting information from alternate points of view and outlining it into valuable data - data that can be utilized to build income, cuts costs, or both. Information mining programming is one of various explanatory devices for breaking down information. It enables clients to break down information from a wide range of measurements or points, order it, and abridge the connections recognized. Actually, information mining is the way toward discovering connections or examples among many fields in huge social databases.
While expansive scale data innovation has been advancing separate exchange and explanatory frameworks, information mining gives the connection between the two. Information mining programming examines connections and examples in put away exchange information dependent on open-finished client questions. A few sorts of investigative programming are accessible: measurable, machine learning, and neural systems. By and large, any of four sorts of connections are looked for: Classes: Stored information is utilized to find information in foreordained gatherings.

2. Literature Review

Dynamic systems have as of late being perceived as a ground-breaking deliberation to show and speak to the worldly changes and dynamic parts of the information hidden numerous mind boggling frameworks. Noteworthy bits of knowledge in regards to the stable social examples among the substances can be picked up by investigating transient advancement of the intricate element relations. This can help distinguish the advances starting with one monitored state then onto the next and may give proof to the presence of outside elements that are in charge of changing the stable social examples in these systems. This paper introduces another information mining technique that investigates the time-tireless relations or states between the substances of the dynamic systems and catches all maximal non-repetitive development ways of the stable social states. Exploratory outcomes dependent on various informational collections from true applications demonstrate that the strategy is proficient and versatile. (J. Zhao, J. Wu, X. Feng, H. Xiong, and K. Xu, 2006)

Web crawlers are essential to many Web applications, such as Web search engines, Web archives, and Web directories, which maintain Web pages in their local repositories. In this paper, the study the problem of crawl scheduling that biases crawl ordering toward important pages. The propose a set of crawling algorithms for effective and efficient crawl ordering by prioritizing important pages with the well-known Page Rank as the importance metric. In order to score URLs, the proposed algorithms utilize various features, including partial link structure, inter-host links, page titles, and topic relevance. The system will conduct a large-scale experiment using publicly available data sets to examine the effect of each feature on crawl ordering and evaluate the performance of many algorithms. The experimental results verify the efficacy of our schemes. In particular, compared with the representative Rank Mass crawler, the FPR-title-host algorithm reduces computational overhead by a factor as great as three in running time while improving effectiveness by 5 % in cumulative Page Rank.

Identifying social influence in networks is critical to understanding how behaviors spread. This present a method that uses in vivo randomized experimentation to identify influence and susceptibility in networks while avoiding the biases inherent in traditional estimates of social contagion. Estimation in a representative sample of 1.3 million Face book users showed that younger users are more susceptible to influence than older users, men are more influential than women, women influence men more than they influence other women, and married individuals are the least susceptible to influence in the decision to adopt the product offered. Analysis of influence and susceptibility together with network structure revealed that influential individuals are less susceptible to influence than no influential individuals and that they cluster in the network while susceptible individuals do not, which suggests that influential people with influential friends may be instrumental in the spread of this product in the network. (J. Zhao, J. Wu, X. Feng, H. Xiong, and K. Xu, 2006)

A tremendous amount of data about individuals – e.g., demographic information, internet activity, energy usage, communication patterns and social interactions – are being collected and analyzed by many national statistical agencies, survey organizations, medical centers, and Web and social networking companies. Wide dissemination of micro data (data at the granularity of individuals) facilitates advances in science and public policy, helps citizens to learn about their societies, and enables students to develop skills at data analysis. Often, however, data producers cannot release micro data as collected, because doing so could reveal
data subjects' identities or values of sensitive attributes. Failing to protect confidentiality (when promised) is unethical and can cause harm to data subjects and the data provider. It even may be illegal, especially in government and research settings. For example, if one reveals confidential data covered by the U. S. Confidential Information Protection and Statistical Efficiency Act, one is subject to a maximum of $250,000 in fines and a five year prison term. (J. Zhao, J. Wu, X. Feng, H. Xiong, and K. Xu, 2006)

With the rapid growth of the availability and popularity of interpersonal and behavior-rich resources such as blogs and other social media avenues, emerging opportunities and challenges arise as people now can, and do, actively use computational intelligence to seek out and understand the opinions of others. The study of collective behavior of individuals has implications to business intelligence, predictive analytics, customer relationship management, and examining online collective action as manifested by various flash mobs, the Arab Spring (2011) and other such events. In this article, the system will introduce a nature-inspired theory to model collective behavior from the observed data on blogs using swarm intelligence, where the goal is to accurately model and predict the future behavior of a large population after observing their interactions during a training phase. Specifically, an ant colony optimization model is trained with behavioral trend from the blog data and is tested over real-world blogs. Promising results were obtained in trend prediction using ant colony based pheromone classifier and CHI statistical measure. To provide empirical guidelines for selecting suitable parameters for the model, conclude with interesting observations, and envision future research directions. (D. Luo, C. Ding, and H. Huang, 2011)

The ascent of Big Data applications where information gathering has developed tremens doubly and is past the capacity of generally utilized programming apparatuses to catch, oversee, and process inside an "average slipped by time." The most crucial test for Big Data applications is to investigate the vast volumes of information and concentrate helpful data or learning for future activities. As a rule, the learning extraction process must be extremely proficient and near ongoing in light of the fact that putting away all watched information is almost infeasible. The exceptional information volumes require a successful information investigation and forecast stage to accomplish quick reaction and continuous characterization for such Big Data.

The challenges at Tier I focus on data accessing and arithmetic computing procedures. Because Big Data are often stored at different locations and data volumes may continuously grow, an effective computing platform will have to take distributed large-scale data storage into consideration for computing. The challenges at Tier II center on semantics and domain knowledge for different Big Data applications. Such information can provide additional benefits to the mining process, as well as add technical barriers to the Big Data access (Tier I) and mining algorithms (Tier III). At Tier III, the data mining challenges concentrate on algorithm designs in tackling the difficulties raised by the Big Data volumes, distributed data distributions, and by complex and dynamic data characteristics. (X. Wu, Feng, 2014.)

A HACE theorem is proposed to model Big Data characteristics. The characteristics of HACH make it an extreme challenge for discovering useful knowledge from the Big Data. The HACE theorem suggests that the key characteristics of the Big Data are 1) huge with heterogeneous and diverse data sources, 2) autonomous with distributed and decentralized control, and 3) complex and evolving in data and knowledge associations. To support Big Data mining, high-performance computing platforms are required, which impose systematic designs to unleash the full power of the Big Data. Provide most relevant and most accurate social sensing feedback to better understand our society at real-time. (X. Wu, Feng, 2014.)

3. Research Design and Methodology
Twitter is a highly popular platform for information exchange, can be used as a data-mining source which could aid in the aforementioned challenges which is collected by sensor nodes. Specifically, using a large data set of harvested tweets, sensor nodes connect with sink to transfer the dataset to HDFS system. The REST APIs provides programmatic access to read and write Twitter data. Author a new Tweet, read author profile and follower data, and more. The REST API identifies Twitter applications and users using OAuth, responses are available in JSON.

This stage usually starts with data preparation which may involve cleaning data, data transformations, and selecting subsets of records and in case of data sets with large numbers of variables (“fields”) performing some preliminary feature selection operations to bring the number of variables to a manageable. Making use of complex data is a major challenge for Big Data applications, because any two parties in a complex network are potentially interested to each other with a social connection. Such a connection is quadratic with respect to the number of nodes in the network, so a million node networks may be subject to one trillion connections.

In this collected data is transferred to HDFS system and spectral clustering is performed to perform data analytics based on the Hash tag, Location and retweet count. As Big Data applications are featured with autonomous sources and decentralized controls, aggregating distributed data sources to a centralized site for mining is systematically prohibitive due to the potential transmission cost and privacy concerns. On the other hand, although we can always carry out mining activities at each distributed site, the biased view of the data collected at each site often leads to biased decisions or models.

For this analysis refer to figure 3.1, a different user lists on twitter as the ground truth data for a group of users was used. It obtained all the tweets from the users who were listed in the lists and then tried to obtain clusters by using different similarity metrics using the spectral clustering algorithm. In addition to this, it has also explored different connections between users in addition to just the social connections in order to find out other features that affect the users being listed together. The present results of applying spectral clustering algorithm using the modularity matrix and the symmetric normalized Laplacian matrix. The system is able to compare the results of these approaches while using several different input matrices formed by different combination of the above similarity measures.

![Fig: 3.1 System Architecture](image)

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram defined by and created from a Use-case analysis. Its purpose is to present a graphical overview of the functionality provided by a system in terms of actors, their goals (represented as use cases), and any dependencies between those use cases. The main purpose of a use case diagram is to show what system functions are performed for which actor. Roles of the actors in the system can be depicted.
Fig: 3.2 Shows the behavioural diagram, which is used to show the structure of the system and the roles of the actor with the system.

In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system’s classes, their attributes, operations (or methods), and the relationships among the classes. It explains which class contains information.

A sequence diagram in Unified Modeling Language (UML) a seen in figure 3.4 is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and timing diagrams.

Fig: 3.3 shows how the process operates with one another and in what order.
Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control.

Fig: 3.5 The operational step by step workflow of the components in the system

Fig: 3.6 Show how the each step works together in collaborations to be able to reach final step in the system.

HARDWARE REQUIREMENTS:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Pentium IV</td>
</tr>
<tr>
<td>2.4 GHz.Hard Disk</td>
<td>40 GB.</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>1.44 Mb.</td>
</tr>
<tr>
<td>Ram</td>
<td>512 Mb.</td>
</tr>
</tbody>
</table>

SOFTWARE REQUIREMENTS:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>Windows XP/7.</td>
</tr>
<tr>
<td>Coding Language</td>
<td>JAVA/J2EE.</td>
</tr>
<tr>
<td>IDE</td>
<td>Net beans 7.4.</td>
</tr>
</tbody>
</table>
4. Results and Discussion

4.1 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

- ECONOMICAL FEASIBILITY
- TECHNICAL FEASIBILITY
- SOCIAL FEASIBILITY

4.2 ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased. (Y.-C. Chen, W.-C. Peng, and S.-Y. Lee, 2012)

4.3 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system. (S. Borgatti, A. Mehra, D. Brass, and G. Labianca, 2009)

4.4 SOCIAL FEASIBILITY

The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system. (S. Borgatti, A. Mehra, D. Brass, and G. Labianca, 2009)
Fig: 4.2: uploading of data. Data files are uploaded to be stored in the system for the second part of the system to take action.

Fig: 4.3 shows data sizes and the results of the data uploaded in flume.

Fig: 4.4 Spectral Clustering

Fig: 4.4 to perform a spectral clustering we need 3 main steps: Create a similarity graph between our N objects to cluster. Compute the first k eigenvectors of its Laplacian matrix to define a feature vector for each object. Run k-means on these features to separate objects into k classes. (Aoullay, 2018) Spectral Cluster for beginners, (2018)
5. Conclusion

Driven by real-world applications and key industrial stakeholders and initialized by national funding agencies, managing and mining Big Data have shown to be a challenging yet very compelling task. While the term Big Data literally concerns about data volumes, our HACE theorem suggests that the key characteristics of the Big Data are 1) huge with heterogeneous and diverse data sources, 2) autonomous with distributed and decentralized control, and 3) complex and evolving in data and knowledge associations. Such combined characteristics suggest that Big Data require a “big mind” to consolidate data for maximum values.

To explore Big Data, it has analyzed several challenges at the data, model, and system levels. To support Big Data mining, high-performance computing platforms are required, which impose systematic designs to unleash the full power of the Big Data. At the data level, the autonomous information sources and the variety of the data collection environments, often result in data with complicated conditions, such as missing/uncertain values. In other situations, privacy concerns, noise, and errors can be introduced into the data, to produce altered data copies. Developing a safe and sound information sharing protocol is a major challenge. At the model level, the key challenge is to generate global models by combining locally discovered patterns to form a unifying view. This requires carefully designed algorithms to analyze model correlations between distributed sites, and fuse decisions from multiple sources to gain a best model out of the Big Data. At the system level, the essential challenge is that a Big Data mining framework needs to consider complex relationships between samples, models, and data sources, along with their evolving changes with time and other possible factors. A system needs to be carefully designed so that unstructured data can be linked through their complex relationships to form useful patterns, and the growth of data volumes and item relationships should help form legitimate patterns to predict the trend and future.

Big Data can be regarded as an emerging trend and the need for Big Data mining is arising in all science and engineering domains. With Big Data technologies, we will hopefully be able to provide most relevant and most accurate social sensing feedback to better understand our society at real time. We can further stimulate the participation of the public audiences in the data production circle for societal and economical events. The era of Big Data has arrived.

Reference

[27] Xindong Wu, Fellow, IEEE, Xingquan Zhu, Senior Member, IEEE, Gong-Qing Wu, and Wei Ding, Senior Member, IEEE, “Data Mining with Big Data”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 1, JANUARY 2014.

IJISE is a FTMS Publishing Journal